Coagulation Factor XI Promotes Distal Platelet Activation and Single Platelet Consumption in the Bloodstream Under Shear Flow.
نویسندگان
چکیده
OBJECTIVE Coagulation factor XI (FXI) has been shown to contribute to thrombus formation on collagen or tissue factor-coated surfaces in vitro and in vivo by enhancing thrombin generation. Whether the role of the intrinsic pathway of coagulation is restricted to the local site of thrombus formation is unknown. This study was aimed to determine whether FXI could promote both proximal and distal platelet activation and aggregate formation in the bloodstream. APPROACH AND RESULTS Pharmacological blockade of FXI activation or thrombin activity in blood did not affect local platelet adhesion, yet reduced local platelet aggregation, thrombin localization, and fibrin formation on immobilized collagen and tissue factor under shear flow, ex vivo. Downstream of the thrombus formed on immobilized collagen or collagen and 10 pmol/L tissue factor, platelet CD62P expression, microaggregate formation, and progressive platelet consumption were significantly reduced in the presence of FXI function-blocking antibodies or a thrombin inhibitor in a shear rate- and time-dependent manner. In a non-human primate model of thrombus formation, we found that inhibition of FXI reduced single platelet consumption in the bloodstream distal to a site of thrombus formation. CONCLUSIONS This study demonstrates that the FXI-thrombin axis contributes to distal platelet activation and procoagulant microaggregate formation in the blood flow downstream of the site of thrombus formation. Our data highlight FXI as a novel therapeutic target for inhibiting distal platelet consumption without affecting proximal platelet adhesion.
منابع مشابه
An Overview on Platelet-derived Microparticles in Platelet Concentrates: blood collection, method preparation and storage
Preparations of platelet concentrates (PCs) that are stored under blood bank conditions and used for transfusion purposes, appear to be enriched in platelet derived-microparticles (PMPs) with high coagulant activity that may change platelet efficacy and safety issues. High shear stress could cause shedding of PMPs from the platelet plasma membrane, platelet aggregation, and activation of the co...
متن کاملBlood clot formation under flow: the importance of factor XI depends strongly on platelet count.
A previously validated mathematical model of intravascular platelet deposition and tissue factor (TF)-initiated coagulation under flow is extended and used to assess the influence on thrombin production of the activation of factor XI (fXI) by thrombin and of the activation of factor IX (fIX) by fXIa. It is found that the importance of the thrombin-fXIa-fIXa feedback loop to robust thrombin prod...
متن کاملRemoval of the C-Terminal Domains of ADAMTS13 by Activated Coagulation Factor XI induces Platelet Adhesion on Endothelial Cells under Flow Conditions
Platelet recruitment to sites of vascular injury is mediated by von Willebrand factor (VWF). The shear-induced unraveling of ultra-large VWF multimers causes the formation of a "stringlike" conformation, which rapidly recruits platelets from the bloodstream. A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) regulates this process by cleaving VWF to pre...
متن کاملFlow Cytometric Measurement of CD41/CD61 and CD42b Platelet Receptors and Clotting Assay of Platelet Factor 3 During Long Term-Storage of Platelet Concentrates
Background: The purpose of the present in vitro study was to evaluate the effect of long term storage of conventional platelet concentrates (PCs) on major platelet receptors CD42b and CD41/CD61 by flow cytometry method and also measuring the overall platelet procoagulant activity status using platelet factor 3 (PF3) assay. Materials and Methods: Six random units of conventional platelet conce...
متن کاملIdentification of coagulation factor XI as a ligand for platelet apolipoprotein E receptor 2 (ApoER2).
OBJECTIVE Factor XI (FXI) promotes hemostasis and thrombosis through enhancement of thrombin generation and has been shown to play a critical role in the formation of occlusive thrombi in arterial injury models. The aim of this study was to investigate the mechanisms governing interactions between FXI and platelets. METHODS AND RESULTS Platelet adhesion to immobilized FXI was abrogated in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 36 3 شماره
صفحات -
تاریخ انتشار 2016